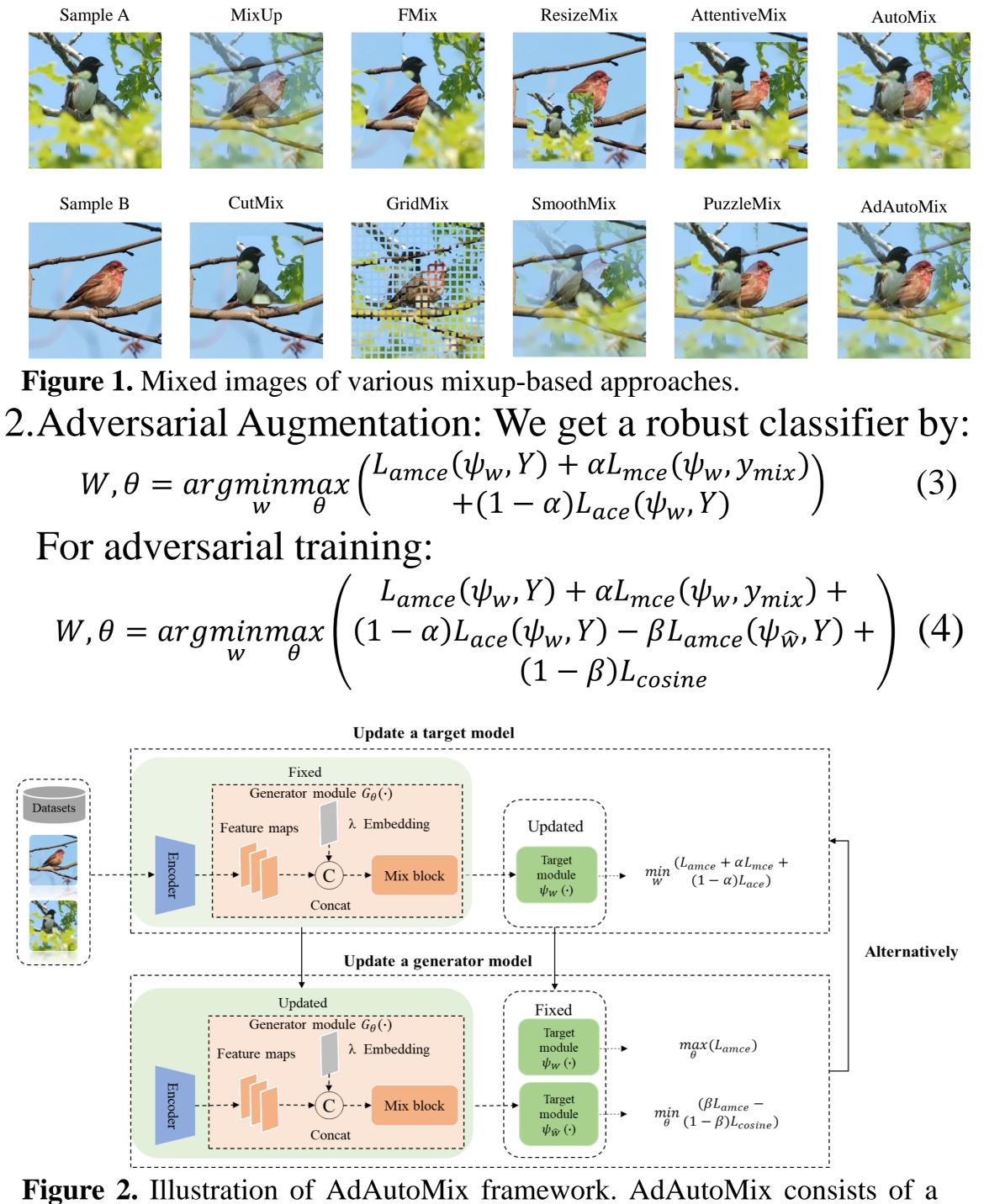


The 12th International Conference on **Learning Representations**

Introduction

- Mixup approaches have been widely applied to improve the generalization ability of DNNs.
- Recently, offline mixup has been gradually replaced by automatic mixup, *e.g.* AutoMix.
- AutoMix aims to obtain, instead of diverse mixed samples, consistent samples w.r.t training data, which may lead to DNNs overfitting.
- We propose AdAutoMix, an adversarial automatic mixup augmentation model that aims to generate *challenging* samples to train a robust classifier for image classification. Extensive experiments prove that our method outperforms the SOTA in various classification scenarios.

AdAutoMix


1.Generator: We get $z_n^l \in \mathbb{R}^{c \times h \times w}$ from an encoder, and obtain embedding $\lambda \max z_{\lambda}^{l} = C(M_{\lambda}, z_{n}^{l}) \in$ $R^{c+1 \times h \times w}$, then obtain mixed samples by MB:

$$P_{n} = Softmax\left(\frac{\sum_{i=1, i\neq n}^{N} q_{n}^{T} k_{i}}{\sqrt{d}}\right) \nu_{n} \qquad (1)$$
$$x_{mix} = \sum_{n=1}^{N} x_{n} \times Softmax(P_{1}, \dots, P_{n})_{n} \qquad (2)$$

Adversarial AutoMixup

Huafeng Qin^{1,*,#}, Xin Jin^{1,*}, Yun Jiang¹, Mounîm A. El-Yacoubi², Xinbo Gao³

¹ Chongqing Technology and Business University, ² Telecom SudParis, Institut Polytechnique de Paris ³ Chongqing University of Posts and Telecommunications

Generator module and a Target module.

Chongqing Technology and Business University, China Email: Jinxin20001118@163.com Paper: https://arxiv.org/abs/2312.11954 Code: https://github.com/JinXins/Adversarial-AutoMixup

Experiments

• Image classification experiments compared with other mixup approaches on generic datasets (Tab 1) and fine-grained (Tab 2) datasets.

Table 1. Top-1 accuracy (%)↑ of mixup approaches on CIFAR-100, Tiny-ImageNet and ImageNet-1K with CNN architecture and Transformer architecture.

	CIFA	AR100	CI	FAR100	Tiny-I	mageNet	ImageNet-1K			
Method	ResNet18	ResNeXt50	Swin-T	ConvNeXt-T	ResNet18	ResNeXt50	ResNet18	ResNet34	ResN	
Vanilla	78.04	81.09	78.41	78.70	61.68	65.04	70.04	73.85	76.	
MixUp	79.12	82.10	76.78	81.13	63.86	66.36	69.98	73.97	77.	
CutMix	78.17	81.67	80.64	82.46	65.53	66.47	68.95	73.58	77.	
SaliencyMix	79.12	81.53	80.40	82.82	64.60	66.55	69.16	73.56	77.	
FMix	79.69	81.90	80.72	81.79	63.47	65.08	69.96	74.08	77.	
PuzzleMix	81.13	82.85	80.33	82.29	65.81	67.83	70.12	74.26	77.	
ResizeMix	80.01	81.82	80.16	82.53	63.74	65.87	69.50	73.88	77.	
AutoMix	82.04	83.64	82.67	83.30	67.33	70.72	70.50	74.52	77.	
AdAutoMix	82.32	84.22	84.33	83.54	69.19	72.89	70.86	74.82	78 .	
Gain	+0.28	+0.58	+1.66	+0.24	+1.86	+2.17	+0.36	+0.30	+0.	

• Robustness.

Table 2. Top-1 accuracy (%)↑ of mixup approaches on CUB-200, FGVC-Aircrafts and Standford-Cars.

82.98 79.52

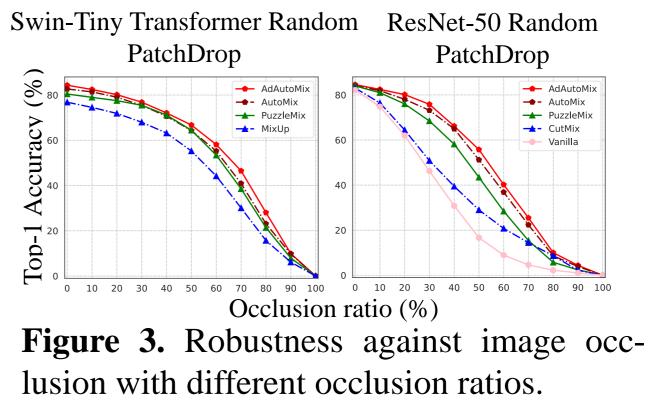

82.38

Table 3. Top-1 accuracy $(\%)\uparrow$ with clean and corruption test Method Vanilla dataset and FGSM error (%). MixUp

autubet an			•)*•	CutMix	78.40	83.17	78.84	84.55	87.48	
			FCCL	ManifoldMix	79.76	83.76	80.68	86.60	85.88	
	Clean	Corruption	FGSM	SaliencyMix	77.95	81.71	80.02	84.31	86.48	
Method	Acc(%)↑	$Acc(\%)\uparrow$	Error(%)↓	FMix	77.28	83.34	79.36	86.23	87.55	
CutMix	79.45	46.66	88.24	PuzzleMix	78.63	83.83	80.76	86.23	87.78	
FMix	78.91	50.58	88.35	ResizeMix	78.50	83.41	78.10		88.17	
PuzzleMix	79.96	51.04	80.52	AutoMix	79.87	83.88	81.37	86.72	88.89	
AutoMix	80.02	50.75	82.67	AdAutoMix	80.88	84.57	81.73	87.16	89.19	
AdAutoMix	81.55	51.44	75.66	Gain	+1.01	+0.69	+0.36	+0.44	+0.30	
PuzzleMix AutoMix	79.96 80.02	51.04 50.75	80.52 82.67	AutoMix AdAutoMix	80.88	83.88 84.57	81.37 81.73	87.16	8 8	8.89 9.19

77.68

78.39

FGVC-Aircrafts

85.10

86.27

85.18

ResNet18 ResNet50 | ResNet18 ResNeXt50 | ResNet18 H

80.23

I'm searching for a 2025 fall or 2026 spring PhD position, if you are nterested, please feel free to contac

l-Cars
esNeXt50
90.15
90.81
91.22
90.20
90.60
90.90
91.29
91.36
91.38
91.59
+0.21

